Kähler manifolds and fundamental groups of negatively δ-pinched manifolds

نویسندگان

  • Jürgen Jost
  • Yi-Hu Yang
چکیده

In this note, we will show that the fundamental group of any negatively δ-pinched (δ > 14) manifold can’t be the fundamental group of a quasi-compact Kähler manifold. As a consequence of our proof, we also show that any nonuniform lattice in F4(−20) cannot be the fundamental group of a quasi-compact Kähler manifold. The corresponding result for uniform lattices was proved by Carlson and Hernández [3]. Finally, we follow Gromov and Thurston [6] to give some examples of negatively δ-pinched manifolds (δ > 14) of finite volume which, as topological manifolds, admit no hyperbolic metric with finite volume under any smooth structure. This shows that our result for δ-pinched manifolds is a nontrivial generalization of the fact that no nonuniform lattice in SO(n, 1)(n ≥ 3) is the fundamental group of a quasi-compact Kähler manifold [21].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aspherical Manifolds with Relatively Hyperbolic Fundamental Groups

We show that the aspherical manifolds produced via the relative strict hyperbolization of polyhedra enjoy many group-theoretic and topological properties of open finite volume negatively pinched manifolds, including relative hyperbolicity, nonvanishing of simplicial volume, co-Hopf property, finiteness of outer automorphism group, absence of splitting over elementary subgroups, acylindricity, a...

متن کامل

Representations of Fundamental Groups of Compact Kähler Manifolds in Solvable Matrix Groups

In the paper we prove a factorization theorem for representations of fundamental groups of compact Kähler manifolds (Kähler groups) into solvable matrix groups. We apply this result to prove that the universal covering of a compact Kähler manifold with a residually solvable fundamental group is holomorphically convex.

متن کامل

L-cohomology of Negatively Curved Manifolds

We compute the L-cohomology spaces of some negatively curved manifolds. We deal with two cases: manifolds with finite volume and sufficiently pinched negative curvature, and conformally compact manifolds.

متن کامل

Cohomologically Kähler Manifolds with No Kähler Metrics

We show some examples of compact symplectic solvmanifolds, of dimension greater than four, which are cohomologically Kähler and do not admit Kähler metric since their fundamental groups cannot be the fundamental group of any compact Kähler manifold. Some of the examples that we study were considered by Benson and Gordon (1990). However, whether such manifolds have Kähler metrics was an open que...

متن کامل

Geometric Finiteness in Negatively Pinched Hadamard Manifolds

In this paper, we generalize Bonahon’s characterization of geometrically infinite torsion-free discrete subgroups of PSL(2,C) to geometrically infinite discrete torsionfree subgroups Γ of isometries of negatively pinched Hadamard manifolds X. We then generalize a theorem of Bishop to prove that every such geometrically infinite isometry subgroup Γ has a set of nonconical limit points with cardi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003