Kähler manifolds and fundamental groups of negatively δ-pinched manifolds
نویسندگان
چکیده
In this note, we will show that the fundamental group of any negatively δ-pinched (δ > 14) manifold can’t be the fundamental group of a quasi-compact Kähler manifold. As a consequence of our proof, we also show that any nonuniform lattice in F4(−20) cannot be the fundamental group of a quasi-compact Kähler manifold. The corresponding result for uniform lattices was proved by Carlson and Hernández [3]. Finally, we follow Gromov and Thurston [6] to give some examples of negatively δ-pinched manifolds (δ > 14) of finite volume which, as topological manifolds, admit no hyperbolic metric with finite volume under any smooth structure. This shows that our result for δ-pinched manifolds is a nontrivial generalization of the fact that no nonuniform lattice in SO(n, 1)(n ≥ 3) is the fundamental group of a quasi-compact Kähler manifold [21].
منابع مشابه
Aspherical Manifolds with Relatively Hyperbolic Fundamental Groups
We show that the aspherical manifolds produced via the relative strict hyperbolization of polyhedra enjoy many group-theoretic and topological properties of open finite volume negatively pinched manifolds, including relative hyperbolicity, nonvanishing of simplicial volume, co-Hopf property, finiteness of outer automorphism group, absence of splitting over elementary subgroups, acylindricity, a...
متن کاملRepresentations of Fundamental Groups of Compact Kähler Manifolds in Solvable Matrix Groups
In the paper we prove a factorization theorem for representations of fundamental groups of compact Kähler manifolds (Kähler groups) into solvable matrix groups. We apply this result to prove that the universal covering of a compact Kähler manifold with a residually solvable fundamental group is holomorphically convex.
متن کاملL-cohomology of Negatively Curved Manifolds
We compute the L-cohomology spaces of some negatively curved manifolds. We deal with two cases: manifolds with finite volume and sufficiently pinched negative curvature, and conformally compact manifolds.
متن کاملCohomologically Kähler Manifolds with No Kähler Metrics
We show some examples of compact symplectic solvmanifolds, of dimension greater than four, which are cohomologically Kähler and do not admit Kähler metric since their fundamental groups cannot be the fundamental group of any compact Kähler manifold. Some of the examples that we study were considered by Benson and Gordon (1990). However, whether such manifolds have Kähler metrics was an open que...
متن کاملGeometric Finiteness in Negatively Pinched Hadamard Manifolds
In this paper, we generalize Bonahon’s characterization of geometrically infinite torsion-free discrete subgroups of PSL(2,C) to geometrically infinite discrete torsionfree subgroups Γ of isometries of negatively pinched Hadamard manifolds X. We then generalize a theorem of Bishop to prove that every such geometrically infinite isometry subgroup Γ has a set of nonconical limit points with cardi...
متن کامل